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Abstract. We describe a method for obtaining an analytic form for an inverse of a class of

symmetric semi-infinite banded matrices, which are, apart from a finite number of terms, of
the Toeplitz type. The results are applied to the determination of the spectrum of two-magnon
excitations in Heisenberg spin chains with next-nearest-neighbour interactions.

1. Introduction

A Toeplitz matrix A has elementsi, ; with the propertyA, ; = a(¢ — j). In the case
of semi-infinite matrices¢ j = 0,1,...) necessary and sufficient conditions have long
been known [1, 2] for the existence of an inverse and for finite matrices the inverse can be
computed numerically using the Trench algorithm [3]. The eigenvalues and eigenvectors for
the finite symmetric tridiagonal case were obtained by Streater [4]. These results provide
an expression for the inverse matrix, which has also been obtained more recently by Hu
and O’Connell [5] from a calculation of the determinant and cofactors of the matrix. The
method of Hu and O’Connell has been generalized to matrices of bandwidth greater than
three by Simons [6] and to symmetric tridiagonal matrices without the Toeplitz property by
Yamani and Abdelmonem [7]. Results similar to those of Simons have been obtained by
Lavis and Southern [8] using a transfer matrix rescaling method which has been utilized for
excitations in tight-binding systems [9, 10] and quantum spin chains [11-13]. In this paper
we apply the approach of Lavis and Southern to the problem of inverting a semi-infinite
symmetric banded matrix which is, apart from a finite number of terms, of Toeplitz form.
An important difference between finite non-singular square matrices and semi-infinite (or
infinite) matrices is that whereas the former have unique inverses the latter may have an
infinite number of inverses. This situation occurs because of the possible existence of a non-
trivial matrix C which is for A a divisor of zero, AC = 0. Then if B is an inverse ofA all
matrices of the fornB + AC will also be inverses. As will be seen teaistenceof divisors
of zero plays a crucial role in our method. However, only one inverse is generated by the
procedure with the associated divisor of zero bedentically zero. There is, therefore, no
ambiguity when the procedure is applied to physical problems.

We consider the semi-infinite symmetric banded matrisesf the formy

a(t, j) if|j—¢€l<n

LIAj) = £,j=0,1,... 1
WAL =1 Lt~ n y (1)

1 For any matrixX we denote the row and column vectors formed by¢its row and jth column by (¢|X and
X|j) respectively and thé, jth element by(¢|X|j).

0305-4470/97/207229+13$19.5@C) 1997 IOP Publishing Ltd 7229



7230 D A Lavis et al

wherea(¢,¢ +n) # 0 for ¢ = 0,1,.... The Toeplitz property is taken to apply to all
elements except those lying in the leadifig+ 1) x (r + 1) submatrix. Thus

all, j) =a(ll — j|) when¢ > t or j > t (or both). 2

Without loss of generality let«(n) = 1. It can be shown that matrices of this type are
bounded operators on the class of square-summable semi-infinite vectors.

In section 2 we derive the general form for an inverséofin section 3 explicit results
are given for tridiagonaln = 1) and pentadiagonak (= 2) cases. The first of these can
be used to rederive the results of Laeisal [14] for a semi-infinite tight-binding system
with a surface adatom and an impurity located in the bulk. In section 4 the results for the
pentadiagonal case are used to obtain the two-magnon spectrum of a generaliz€d spin-
Heisenberg chain and our conclusions are presented in section 5.

2. Method

Given thatB is an inverse ofA

n

D al. t+mbt+m, j)=5; €)
whereb(¢, j) = (¢|B|j) if £, j > 0 and zero otherwise, and we have similarly extended
the definition (1) so that(¢, j) = 0 if £ or j is negative. We define thenzdlimensional
vectors

bl —n+1,))
bl —n+2,j)
be(j) = : (4)
b(l+n,j)
and the 2 x 2n matrices
_at—n+l) _at—n+2) L. _ay .. _alt+n—l -1
a(l,l+n) a(l,l+n) a(l,l+n) a(l,+n)
1 0 R ce .. 0
0 1 0 0
T, = _ . : : . : . ®)
0 0 0 0
0 0 1 0
a(l,t—n)
a(l,l+n) 0 0
0 1 0
0 0O 1 -+ v == 0
Q= : e (©)
0 B R 0
0 O -+ .. ... 0 1
Then equation (3) can be expressed in the form
. . 8e,111)
Tobe(j) = Qebeoa(j) — —— L. (7)
a(j, j+n)
Iterating (7) gives
. L ®E NI
be(j) = @, 0)b_1(j) — (8)

a(j, j+n)
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where
T,'Qe... T, Qi Tt if £>m
®(,m)=1{T* if ¢=m 9)
0 if £ <m.
From equations (2), (5) and (6) we see that, when t, (9) gives
B m) T ®(z, m) T>m (10)
7m =
-1t m>t
where
—-amn-1) —-am-2) --- —a@© -+ —am—-2) —amr-1 -1
1 0 0 0 0
0 1 0 0 0
T= . . . . . :
0 0 1 0 0
0 0 0 1 0
(11)

The problem now is to obtain an expression for the elements of powers of the Matrix
a previous paper [8] two of the authors have shown that this can be done by defining

2n—q

X,(x) = Za(|n—r|)x’+" q=0,1,...,2n. (12)
r=0
It is then not difficult to show that the eigenvaluesTofire the rootsy, xk‘l, k=1 ...,n
of
Xo(x)=0 (13)
with corresponding orthonormal left and right eigenvectors
X1(x) Y1(x)
Xo(x) Ya(x)
X(x) = . Yx) = . (14)
X0, (x) Y2, (x)
where
. (15)
Yp(x) = ———.
b Xo(x)
Thus
(PIT"1g) = Y _(¥p(xi) X (x)xf" + Y, (5 1) Xy (D ™). (16)
k=1
Settingx;, = exp(i6;) then gives
(pIT"q) = uy(m — p+1) pg=1L1....2n (17)
where
2n—q n ;
sin{(n + u —r — 1)6;}
g =Y alln—q—rDY. - ¢ (18)
r=0 k=1 (©h)
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and +0,, +0,, ..., 106, are the roots of

n—1
0= F(9) = cosnf) + 3a(0) + Y _ ar(r) cos(ro) (19)
r=1
with
—ur(p — 1) for g = 2n
= 20
) : —a(ln —ghur(n — 1) +ugpa(pn — 1) forl<g <2n (0)
 Sin{(n + 1)}
= — 1)=- —_— 21
ur(p) = —uz,(u + 1) ; oy (21)
Then, from (10) and (17),
2n
St —p—L+D{r|P(T, £ >
1B mlg) — ;u (t — p— L+ D){r|®(z, m)lq) >T>m 22)
ug(m—p—14), L>2m>rt.
The vectorb_1(j) hasn zero entries and, from (8),
N 4o (m@( DID)
b(L, ) _’;(n|11>(£,0)|n+m)b(m 1, j) FINETR (23)

Thus all the elements in th¢th column of B can be expressed as a linear combination
of the elementg0|B|j), (1|Blj), ..., (n — 1|B|j). Replacing? in (23) by ko for some

positive integelo andx =1, 2, ..., n yields the set of equations
. . . (n|®kao, j)I1)
bko, j) = n|®ko,0)|ln +m)bm-1,j)— ——F——"— k=12 ...,n.
(Ko, j) m;u (0, 0)|n + m)b( D= i em
(24)
Let then x n matrix
(n|®(c,0)|n + 1) n|®0,0n+2) --- (nP(o,0)|2n)
(n|®20,0)ln+1) n|P2o,0)n+2) --- (n|P2o,0)|2n)
U, = . . . . . (25)
(n|<I’(nU,.O)|n + 1) (n|'1>(no,'0)|n +2) - . (n|'1)(na., 0)|2n)
Then, by solving equations (23) féi¢, j), £ =0,1,...,n — 1 and substituting into (24),
b(L, j) =Cy(¢, j)+ Bs (L, ) (26)
where
Co(l, j) =) (nl®(E,0)ln + m)m|U;  )b(ko, ) (27)
k=1m=1
Bo'ev‘ I’l‘I’EO)n—i—m
€ j)= a(uﬂ){;mz |®(€, 0)|n + m)
x (m|U; k) (n|®(ko, j)I1) — (n|B (¢, j)|1>}- (28)

Now consider the limito — oo. In all the applications we consider in this paper the
matrix A = E | — H, whereH is a Hamiltonian and is the energy. The inverse is then a
Green'’s function and a small positive imaginary part is needed in the energy [15] to impose
the correct boundary conditions and determine the Green’s function uniquely in the limit
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o — oo. The small imaginary part ia(0) will lead to imaginary parts if;. Since the form
for u, () given by (18) is invariant under the change of sign of the solutians. ., 6, of
(19) we can assume that the imaginary part of ecis positive. Then

g " exp((n 4 1 — ko —r — 1)y}
us( — ko) =~ ;a(ln—q—rl); 20F (6
~ exp{xa mkax[lm(ek)]}. (29)

which, from (22) and (25), gives

n|® ko, j)|1) ~ exp|m mka>{lm(9k)]}
(30)
(€ + 1)Uy ~ exp[ P mkax[lm(ek)]].

Using these formulae it is not difficult to see that, in the limit—> oo, the matrix with
elements
c(, j)= lim C,(¢, j) (31)
a—> 00

is a divisor of zero forA whenany possible inverse with elementg¢, j) in used. Thus,
from (28), we have the formula

1 n
b, j)=1lm B, (¢, j) = ——F— n‘I>€,0n+QO,'—n<I’£,')1}
(&) = Jim, Bo (& ) a(J’Hn){n;u (€, 0)ln +m)2(m, j) = (n|B (. PIL)
(32)
for the elements of an inverd® of A, where
Qem, j) = lim > (mU; ) (n| @ (o, )ID). (33)

k=1
It may appear to be the case that we can now generate a divisior of zero with elements
c(¢, j) by substituting from (32) into (27) and (31); this in turn leads to a succession of
further inverses and divisors of zero. However, with this particular formbfér ), this
situation does not arise since it is easy to verify th@t j) =0 forall ¢, j =1,...,n.

3. Explicit formulae

3.1. Thecase =1
Forn =1, U, is a 1x 1 matrix with (1|U, |1) = {(1|®(c, 0)|2)}~1. From (32) and (33)

b, j) = ——— (1P, 0)[2)2(1, j) — (1|, j)|1)} (34)
a(j,j+1
where
e (U0, )IT)

BD= I a6, 012 o
From (21),

ui(pu) = —u2(p + 1) = 4, (cog6)) 2co90) = —a(0) (36)
where

sin{(u + 1)6}

Hu(Cos) = =)

(37)
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is the Chebyshev polynomial of the second kind and, from (22),

sinf(t — £+ 1)O}(1|®(t, m)|q) — Sin{(t — £)0}(2|®(z, m)|q)
sin(9)

>t>2mqg=12

AU mlg) = 1 sinm — 0)9) (sme g1 49
sin(@)

_sin{(m —¢— 16}

- L>2m>71,q=2.
sin(@)

For simplicity we consider the cage= 0. A is a tridiagonal semi-infinite Toeplitz matrix
witha(¢, ¢+1) = 1,a(¢, £) = «(0), except for the leading diagonal elemeii®, 0) # «(0).
From (5) and (9)

a2 _ (O 1
®0,0) =Ty = (_1 a0, 0)) (39)
and, from (32), (34) and (38),
b, j)= f,j) +igl, j) (40)
where
. Sie, j) <
L, j) = 41
1) {flu,e) 0> (1)
and
Al )= — [sin{¢6}a(0, 0) 4 sin{(£ — 1)8}][cos{j6}a(0, 0) + cod(j — 1)6}]
v )= Sin@){1 + 2a(0, 0) cosd) + [a(0, 0)]2} “2)
o iy _[sin{t6}a(0.0) + sin{(¢ — DoY[sin{;j0}a(0, 0) + sin((j — 1o}]
8t J) =~ Sin@){1 + 2a(0, 0) cos(d) + [a(0, 0)]2} '
From (26) and (31)
o (1P, 0)(2) .
c, j) —oli'noo mb(aa]) (43)

and it is not difficult to verify that with the form for the inverse given by (40}, j) = 0.
However, since the elements Af are real whera(0)| < 2, the matrix formed from the
imaginary partg(¢, j) of the elements is a divisor of zero and the real gai, ;) alone is
an inverse. In fact we can see that
. (1@, 0)2) N . (1@, 0)2) ; .
Iim ———— " f(o,j) =ig, im ——— " 9(a, j) = —g, j). 44
M e, oz’ @) = 18E ) M L@, 02 8@ = T8 ). (44
Theuniquedivisor of zero derived by this processgé’, j) which for a semi-infinite version
of the tight-binding chain considered by Lavis and Southern [8] will give the density of
states.

In then = 1 case (7) becomes a three-term recurrence relatiob(£orj) which can be
solved using continued fractions [16]. To use continued fractions whenl the matrix
would need first to be transformed into tridiagonal form.
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3.2. The case = 2

In this casel,, is a 2x 2 matrix and, from (28)

1
b, j) = ———= {212, 0[3)2(1, j) — (2|12, 0422, j) — (21®(, j)|1)} (45)
a(j,j+2)

where
$(2,2,20,0;5—m,1; j)

™ 62 2 20,0:4,3,0) (46)

Q(m, j) =1

and
¢, m;x, y; p,q; j) = (L|R(x, 0)[p)(m|®(y, )lg) — (m|®(y, 0)[p)(€|P(x, jg). (47)
Equation (19) is now a quadratic in the variagle- cog6) with roots;™ and3;~ given
by

3P =3(F2) = 3~ £ 2} (48)
where

Z = [a(D)]? + 8 — 4 (0). (49)
We define
UG — e G

D) = 20 — 30}

(50)

where, from (37),
V(=) = -V — 2) (51)
and, from (19)—(21),
ur1() =0+ 1)
uz(0) = =2{1+ 2500 + 2 +37)1VE - 1) -V -2

(52)

uz(0) = 2(3 +37)00) — V(e - 1)
us(l) = =B(L).
Let
W,(x,y) =Vx+20 —1—2DV(y+0—1—2)

—Vx+o0—-—1—-2V(y+20 —1—2). (53)
Then, from (22) and (47), when > j,
#(2,2; 20,05 p,q; j) = Cor(p, q; )H)Ws(0,1) + Co2(p, g5 /)W (0, 2)

+€o3(p, g5 )W (0, 3) + C12(p, g5 )W, (1, 2)

+€13(p, g5 ))Ws (1, 3) + C23(p, q; )W, (2, 3) (54)
where
Coa(p,q; j) = —a(0)p(L, 2,7, 7; p,q; j) —a(DP(L, 3,7, 75 p, q; J)

-1, 47,15 p.q; )
Co2(p,q; j) = —a(Do(1, 21,75 p,q: j) — (1, 37,75 p. q: )
Co3(p,q; j) = —¢ (1,2, 7,75 p,q; J) (55)

C1a(p, 45 j) = (@(0) —a(DH(2,3; 7,75 p, q; j) — (D2, 4 7,7; p, q; J)
—¢@, 4 1,1:p, 95 J)

C13(p.q; j) = a2, 37,15 p,q; j) — 9 (2,4 7,7; p, q; )

Ca3(p.q; j) = —¢(2,3; 7,75 p, g5 J)-
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Whenj > t the form of¢ (2, 2; 20, o; p, q; j) differs according to the value qf However,
from (45), we need only the casgs= 1 andg = 3 which are given by

$(2,2,20,0;p, 15 j) = A0 (p)W, 0,1+ j — ) + An(p)Wo (1, 1+ j — 1)
+A21(P)Ws (2, 1+ j — 1) + A (p)Wo 3,1+ j — 1) (56)
where
Ao1(p) = (1{2(z, 0)|p)
A11(p) = —a(0)(2|P(7, 0)|p) — (1) (3|P(7, 0)|p) — (4P (7, 0)| p)

1(p) = —a(D(2|2(z, 0)|p) — (3|®(z, 0)|p) &7
Az1(p) = (2[@(7, 0)|p)
and
$(2,2;20,0; p,3; j) = Bo2Ap)Ws (0, 2+ j — 1) + Boz(p)Ws, (0, 3+ j — 1)
+B12(p)Ws (1, 2+ j — 7) + Bas(p)Wo (1, 3+ j — 1)
+B22(p)Wo(2,2+ j — 1) + Baz(p)W, (2, 3+ j — 1)
+B32(p)Wo 3,2+ j — 7) + Bas(p)W, 3,3+ j — 1) (58)
where
Boa(p) = —a(1)(1|P(z, 0)|p)
Boz(p) = —(1|®(z, 0)|p)
B12(p) = (0 (1)(2/D(z, 0)|p) + a(D*(3B (7, 0)| p) + a(1)(4| B (7, 0)| p)
B13(p) = a(0)(2|®(z, 0)|p) + 2(1)(3[® (7, 0)[p) + (4P(7, 0)|p) (59)
Boa(p) = a(D*(2/®(1, 0)|p) + «(1)(3B (7, 0)| p)
Bos(p) = a(1)(2|®(7, 0)|p) + (3[P(z, 0)|p)
Ba2(p) = a(D(2|®(z, 0)|p)
Bas(p) = (2|®(z, 0)|p).
It is not difficult to show that
im W@y _ E@PEEDN - @I 2)] (60)
o—o0 2, (0, 1) (2)—-¢(=2)
where
{(£2) = M[3(£2)] (61)
and
M[3] = the root of larger magnitude df? + 23¢ + 1 = 0}. (62)

This enableg (¢, j) to be obtained from (45). The possibility of the roots in (62) being
degenerate in magnitude is, as indicated above, removed by the introduction of a small
imaginary part ine(0) and thus i (+2).

4. Two-magnon excitations

The multi-magnon spectra of generalized sfilteisenberg chains with nearest-neighbour
interactions have recently been studied using scaling [11] and recursion [12] methods. The
approach involves expressing themagnon Schidinger equation in tight-binding form.

The two- and three-magnon excitations are then obtained using scaling and recursion
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procedures respectively. The former method can be seen to be an application of the
technique used in this paper to invert a semi-infinite symmetric banded matrix.etCyr

al [13] applied the recursion method to obtain the three-magnon spectrum of the next-
nearest-neighbour model with Hamiltonian

N
H=- Z{Jlsi < Sip1 4+ 2Si - Sipo + J3Sim1 - (S % Sip1)) (63)
izl

where §; is the quantum spin located at siteof a uniform chain with lattice spacing
and periodic boundary conditions. They described briefly the use of the scaling method to
obtain the two-magnon spectrum indicating that more detail would be provided in another
publication. These details can now be given in terms of the analysis of tae?2 case
given in the preceding section.

The ferromagnetic state with alV spins parallel is an exact eigenstate of (63) with
energyEy = —NS?(J1+ J»). We shall study the excitation spectrum of (63) relative to the
ferromagnetic state. The one-magnon excitation energy is given by

Eq = 2S5{J1 + 28 J3sin(kag)}{1 — coskao)} + 2SJo{1 — cos2kag)}  (64)

wherek is a wavevector in the rangen/ag < k < m/ap. Assuming that/; > 0 the
condition thatE; > O is that

14 28 +sign(B)vV4p%2+y2 >0 if B£0

65
y<1 ifg=0 (63)

whereg = J,/J; andy = 2S|J3|/J1.

The two-magnon problem is soluble in any dimension, since it is equivalent to a defect
problem on ad-dimensional lattice. In/ = 1 Majumdar [17] considered the Hamiltonian
in (63) with J3 =0 andS = % and Bahurmuz and Loly [18] investigated the same problem
with S = L and § = 1. The two-magnon excitations are solutions of the 8dimger

2
equation which can be written in terms of the the basis of two-spin deviation states

i, j) = S7S10) i< (66)

where|0) represents the ferromagnetic state with all spins aligned in the negadivection.

Using the translational invariance of the Hamiltonian, a transformation can be performed to
a mixed orthonormal basi¥; £), whereK represents the total wavevector of the pair and

¢ =|j —i] is the relative separation of the spin deviations. In this mixed basis and in the
limit N — oo the Hamiltonian has the tight-binding form

o0
H= Z{|K;E)85(K;E| +IK; O)V(K; €+ 1+ |K; O)V/(K; £+ 2]} (67)
=0
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where
g0 =45(J1+ J2)
£1= (45 — 1) J1 + 25J5{2 — cogK)} + 25(1 — S)J3 Sin(K)
g2 =4SJ1 + (4S — 1) J;
g =e=45J1+4SJ, >3
Vo = —2/5(25 — 1)J1coSK /2) + 48 J3./S(2S — 1) sin(K /2) (68)
Vi = —28J1c08K /2) 4+ 25(2S — 1) J3Sin(K /2)
V, =V = —25J,c09K /2) + 452 J3sin(K /2) 0>2
Vg = —2/5(28 — 1)Jc09K) — 25J3,/S(25 — 1) sin(K)

V, =V = —-25J,co8K) — 25?J3sin(K) > 1

The Green'’s function operat@}(E) is defined [15], for energy, by
G(EMEL —H} =1. (69)
In terms of the tight-binding picture the local density of states atéitegiven by

oo(E) = — lim "MGE+18)}
§—0+ T

(70)

For the two-magnon picturg,(E) is the density of the scattering state continuum for two
magnons located at sites with a separatiotayf Comparing equations (1) and (2) with
(67) and (68) we see that the matAxwith elements

. (EI-T)
at, j) = —(K: tl—— 1K ) (71)
is of the banded symmetric form with= 2, r = 2 and
-£& 0<2
a0 ="
a(0) ==& L>2
e+ =ae+10=1" tst (72)
o - T la@ = £>1
(0 0+2)=a(t+20) = o o £=0
A SAETet = ¢>0
where
E — —
g=2"°¢ w=""°% =012
% v/
14 v, VY (73)
V= W:J £=01 v(/):—o
V/ V/ V/
and from (48)
3P =3(FZ2(©E) = {—v £ Z2(E) (74)

with

Z(E) =2+ 8+ 4E. (75)
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With these definitions for the elements Afthe matrix elements of the Green’s function
are given in terms of the inverse matii by

b(¢, j)

(K3 0GE)IK; j) = — o (76)
In particular the two leading diagonal Green’s functions are
G (E) = (K; tIG(E)IK; ) = vi — W)gz)((;)jL <o (=01 (77)
where
FOE) = o1 () + foa (O)AE) + foa ONAE]? — BE)} +§2(E)B(E)
HREVAE)BE) + 3 (O BE)I? (78)
BV (E) = g1 () + 853 () A(E) + goa NAE)]? = B(E)} + a3 (£)B(E)
+aREAE)BE) + g5 () BE)]? (79)
AE) = C(Z(©) + £ (=2(5) (30)
BE) = c(zw))c(—zw»
for (€) = 2 (E) = vhvo 2(E) =
DE) = vg (6 1) — vovh(v — 2v1) — vgua (81)
“’) 3 (&) = —vovp n(E) = —v3
(”(5) = V@ — p2(€ — o)
55 (&) = (1 — v)(E — po) + vovy (&) = —(& - o) @2)
(1)(5) = v1(v1 — V)(€ — o) — vo(vorz — 2v1vy + vig)
DE) = —1(€ — o) — vovp (&) = —v3
gg? E)=p2  gPE =vi—v  gRE) =~—
02(E) = a(€ — 1) + va(vy — v) (83)

g3 (E) = —ny o (&) =€ — 1

95 (&) =0 g5 (E) =0 953 (&) =

012 (€) = pa€ — po) + v (84)
9&13)<5> =0 gRE =& o

Two-magnon excitation spectra for the cases Jay % B=0y= ;31, and (b)S = 1,
B=0,y= % are given in Cyret al [13] and figures 1 and 2 respectively. The lower and
upper band edges of the scattering state continuum are given, respectively, by the least and
greatest of the three quantities

V2
4y’
This gives continuum band edges in unitsf2SJ; for the two cases as (a) 0.8964 and
2.7708, and (b) 0.7929 and 2.6250 respectively. In case (a) the condm@n gives,
from equations (78) and (81§ ©(£) = 0 and thusGo(E) = 1/(E — &). In terms of
the matrix calculation the leading row and column Afcontains only zeros apart from
a(0,0) = (¢ — E)/ V' giving Go(E) = —{(a(0,0)V'}~L. In the two-magnon picturgo(E)

EY =e+2V'£V)  Ei=e-2V - (85)
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Figure 1. The density of statep;(E) for the caseS = % B=0,y= %, K = %. The energy
is measured in units of ;.
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Figure 2. The density of statepo(E) for the caseS =1,8=0,y = % K = %. The energy
is measured in units of ;.

is the density of the scattering state continuum for two magnons (spin deviations) on the
same site. This is, of course, impossible $o& 1 In figure 1 the density of stateg; (E),

for two magnons on neighbouring sites is shown for the &sez, B=0,y= % K=73.

The narrow peak below the broad continuum region is a bound state. If the energy is taken
to be purely real this becomes a delta function as does also the singularity at the upper end
of the continuum. To broaden these regions to make them more easily seen the energy was
given an imaginary part of 1@i. In figure 2 po(E) is shown for the casé = 1, 8 = 0,

y = % K = 7. For § = 1 this is a physical situation where two spin deviations can exist
on the same site. Again the bound-state delta function below the continuum is broadened
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into a Lorenzian by using an imaginary partDin the energy. This also has the effect
of softening the step-function decrease to zero at the upper end of the continuum.

5. Conclusions

In this paper we have extended the work of Lavis and Southern [8] to the case of semi-
infinite symmetric banded matrices which are Toeplitz for all but a finite number of elements.
As in [8] the only explicit matrix inversion needed, when the bandwidthmis-2, is of an

n x n matrix . Our procedure provides the analytic details for the two-magnon calculations
presented by Cyet al [13]. The method will also provide a straightforward procedure
which can be used in a range of physical problems for which inversion of this type of
matrix is required.
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